Learning Virtual Equilibrium Trajectories for Control of a Robot Arm
نویسنده
چکیده
The cerebellar model articulation controller (CMAC) (Albus 1975) is applied for learning the inverse dynamics of a simulated two joint, planar arm. The actuators were antagonistic muscles, which acted as feedback controllers for each joint. We use this example to demonstrate some limitations of the control paradigm used in earlier applications of the CMAC (e.g., Miller et al. 1987, 1990): the CMAC learns dynamics of the arm and not those of the feedback system. We suggest an alternate approach, one in which the CMAC learns to manipulate the feedback controller’s input, producing a virtual trajectory, rather the controller’s output, which is torque. Several experiments are performed that suggest that the CMAC learns to compensate for the dynamics of the plant, as well as the controller.
منابع مشابه
A New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control
In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented. The capability of the proposed method (we named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2 structure ...
متن کاملBehavior-Based Door Opening with Equilibrium Point Control
Within this paper we present a set of behaviors that enable a mobile manipulator to reliably open a variety of doors. After a user designates a location within 20cm of the door handle, the robot autonomously locates the door handle using a tilting laser range finder, approaches the handle using its omnidirectional base, reaches out to haptically find the door, makes contact with the handle, twi...
متن کاملCortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spi...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Computation
دوره 2 شماره
صفحات -
تاریخ انتشار 1990